Transgenic nematodes as biosensors for metal stress in soil pore water samples
نویسندگان
چکیده
Caenorhabditis elegans strains carrying stress-reporter green fluorescent protein transgenes were used to explore patterns of response to metals. Multiple stress pathways were induced at high doses by most metals tested, including members of the heat shock, oxidative stress, metallothionein (mtl) and xenobiotic response gene families. A mathematical model (to be published separately) of the gene regulatory circuit controlling mtl production predicted that chemically similar divalent metals (classic inducers) should show additive effects on mtl gene induction, whereas chemically dissimilar metals should show interference. These predictions were verified experimentally; thus cadmium and mercury showed additive effects, whereas ferric iron (a weak inducer) significantly reduced the effect of mercury. We applied a similar battery of tests to diluted samples of soil pore water extracted centrifugally after mixing 20% w/w ultrapure water with air-dried soil from an abandoned lead/zinc mine in the Murcia region of Spain. In addition, metal contents of both soil and soil pore water were determined by ICP-MS, and simplified mixtures of soluble metal salts were tested at equivalent final concentrations. The effects of extracted soil pore water (after tenfold dilution) were closely mimicked by mixtures of its principal component ions, and even by the single most prevalent contaminant (zinc) alone, though other metals modulated its effects both positively and negatively. In general, mixtures containing similar (divalent) metal ions exhibited mainly additive effects, whereas admixture of dissimilar (e.g. trivalent) ions often resulted in interference, reducing overall levels of stress-gene induction. These findings were also consistent with model predictions.
منابع مشابه
The study of effective stress and pore water pressures in the foundation of a concrete gravity platform affected by loads due to waves, currents and wind in the Persian Gulf
It is proposed to use a single base platform in the Persian Gulf considering its low depth and more appropriate environmental conditions in comparison to North Sea and Mexico Gulf where this kind of platform is very popular. The pile of platform is responsible for transmission of environmental loads resulted from waves, currents, wind and dead loads to foundation of platform. Using SACS 5.3 sof...
متن کاملTreatment of expansive soils with quality saline pore water by cyclic drying and wetting
Expansive soils can be found in many parts of the world particularly in arid and semi-arid regions. These soilspose a significant hazard to civil engineering structures due to its high swelling and shrinkage potential. This paperpresents the results of an experimental program developed to investigate the effect of cyclic drying and wetting on theswelling potential of expansive soils with variou...
متن کاملFinite Difference Numerical Evaluation of Liquefaction with Effective Stress Method and Numerical Estimation of Liquefaction in Bandar Abbas’s Mosque Project (Case Study)
Introduction Estimation of Liquefaction is one of the main objectives in geotechnical engineering. For this purpose, several numerical and experimental methods have been proposed. An important stage to predict the liquefaction is the prediction of excess pore water pressure at a given point. In general, there are two important methods for soil dynamics analyses, fully coupled effective stress ...
متن کاملInfluence of water and sand content on adhesion of clayey soils
Clogging occurs during mechanical tunneling with a Tunnel Boring Machine (TBM) because of adhesion of clayey soils to the cutterhead and conveyor system. The present study examined the effects of water and sand contents on clogging in Montmorillonite clayeysoil. Testing was carried out using an adhesion test device on 28 samples with different water and sand contents to determine adhesionstress...
متن کاملA 2-Year Field Study Shows Little Evidence That the Long-Term Planting of Transgenic Insect-Resistant Cotton Affects the Community Structure of Soil Nematodes
Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial re...
متن کامل